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LETTER TO THE EDITOR 

All direct sum representations of the Temperley-Lieb algebra 
P P Martin 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, UK 

Received 4 February 1987 

Abstract. We show how to write down the irreducible representations of the Temperley-Lieb 
algebra. We show that these representations satisfy Jones' trace condition in the infinite 
limit. 

There has recently been much interest in the Temperley-Lieb algebra (Temperley and 
Lieb 1971) for the operators { Ui,  i = 1,2n - 1) 

uiui = q l / =  vi 
UiUi*,UI = ui ( 1 )  
uiuj = qui \ i - j l >  1. 

This is because the transfer matrices for various statistical mechanical models may be 
written in terms of different representations of these operators. This in turn establishes 
an equivalence between such models, most notably the q = 4 cosz( n/ r)-state Potts 
model (see Baxter 1982) and the apparently conformally invariant critical ( r  - 1)-state 
eight-vertex solid-on-solid model (Andrews et a1 1984, Kuniba et a1 1986). The 
operators are also of interest in the theory of von Neumann algebras (Jones 1983) and 
in knot theory (Jones 1985). 

Temperley (1986) has shown how to write down a set of representations of operators 
satisfying the relations (1) which are the irreducible representations at q = 4, but which 
are not in general irreducible (see Martin 1986a). In the present letter we show how 
to write down the irreducible representations for general q, and in particular we discuss 
the dimension of these representations. 

Consider a sequence {Sj}  of 2n + 1 positive integers. The first integer, Sl,j, is one 
and the last, SZn+l,j, is 2m + 1 (m =0, 1 , 2 , .  . . , n) .  Each entry differs from adjacent 
entries in the sequence by one, and each entry is less than r' where r' is the numerator 
of r (taking r to be a rational in its lowest terms, so r' is infinite for an irrational). For 
example, the allowed sequences for n = 2, r = 5, m = 1 are 

1 2 1 2 3  
1 2 3 2 3  
1 2 3 4 3 .  

The set of such sequences forms a basis for the mth representation, the matrix element 
( u i - 1 ) j . k  being zero unless the j th  and kth sequences are identical in all but (possibly) 
the ith entry and S i - l , j  = Si+l,j (S i , j  is the ith entry in the j th  sequence), whereupon 
the matrix element is 

or 
[sin( s~ ,~T/  r )  sin( r ) ]"2  

otherwise. 
sin(Si+l,jn/r) 
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In order to see that these matrices obey the relations (1) (with q = 4 cos2( T /  r ) )  
note that the sequences are all allowed configurations of an n-step diagonal layer of 
the (r'- 1)-state model (provided no sequence entry exceeds r'- 1, see also equation 
( 2 ) ) .  Note further that allowed configurations of adjacent layers are in the same set 
of sequences. It therefore follows from the star-triangle relation for this model (see 
Kuniba et a1 1986, Baxter 1982) that the matrices obey the relations (1). For example, 
the star-triangle relation implies 
( I + x ( u ) U , ) ( I + x ( u )  U , + , ) ( I + x ( u  - U )  U , )  

= (If x ( u  - U )  U,+l) ( I  + x ( u )  U , ) ( I + x ( u )  q+1, 

x ( u )  = 

for any U, U, where 
sin U 

sin( T / r  - U)' 
Then putting U = 0 we find 

where the operator k is the same for any j .  But from equation (2) we find that k = 0 
whenever j = 1, thus giving the first of the relations (1). 

It is easy to see that no set of sequences can be broken up into subsets with these 
properties; and that no set has internal symmetries such as 

for all j (see equation ( 2 ) )  and hence deduce that the representations are irreducible. 
If we relax the upper bound (r'-1) on sequence entries then we obtain further 
representations by continuity (since there exist representations with irrational r 
arbitrarily close to any rational r ) .  Some of these are reducible due to the vanishing 
of elements from equation ( 2 ) .  The remaining irreducible representations have apparent 
divergences caused by the vanishing of the denominator in equation ( 2 ) .  These 
divergences may be regulated by the prescription r + r + E, 1/ E contributions cancel 
after some €-dependent similarity transformations and E may then be set to zero. In 
what follows we restrict attention to cases in which the upper bound is present. The 
set of rational r values with a given r' correspond to the various branches associated 
with the Beraha q values (see Martin 1987) and the irreducible representations may 
be identified accordingly. Hereafter it will thus be sufficient to restrict attention to 
integer r (so r =  ;I. Elsewhere (for irrational or imaginary r )  we note that our 
representations coincide with the complete set of conventional irreducible representa- 
tions found by Temperley (1986) using Young tableaux. The relevant tableaux are 
those with two rows of length n + m and n - m. 

U ; - q 1 / 2 U ,  = k 

S , ,  = r - S , , k  

Thus, while noting the existence of parasitic representations such as 

U ,  = diag( ql", 0, 0,O) 
/ 1  1 0 1 \  

1 1 0 1  
1 1 0 1  

U, = 41..( 1 (3)  

\ o  o o 01 
U, = diag( 0, q"', 0,O) 

for q = 2 (from Martin 1986a) in which a conventional irreducible representation (the 
upper left 2 x 2  block) is host to other elements which do not form a representation 
on their own, it seems likely that we have found all the conventional representations. 
Note, for instance, that the representation obtained from sequences with = S2n+l , j  = 
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2 is the same as that with Sl,j = S 2 ( n + l ) + , , j  = 1 but with two fewer operators and is 
therefore reducible (cf equation (2)). 

It is also easy to see from equation (2) that m = O  gives the only representation 
with Ro # 0, where 

Ro= n Vi. (4) 
odd i 

This means that the m = 0 representation is responsible for the partition function in 
the associated statistical mechanical models (see Baxter 1982). For any product of U 
operators, x, we have 

RoxRo= lo(X)Ro ( 5 )  
where lo is a scalar. From equation (2) we see that objects of the form 

are non-vanishing only in representation m, and may thus be used to form characteristic 
scalars l,(x) in a way analogous to equation ( 5 )  (see also Temperley 1986). For 
example, the r = 4, n = 2, m = 1 representation 

U1=(2'l2 o) U, = 2-112 (: :) U3=(O 21/2) 

has Ro= R,=O 

and 
U,( u3- 91/2)xul( U3 - q l I 2 )  = l I ( X )  U,( U3 - q l / 2 )  

where l1 is a scalar for any product x by the relations (1). Furthermore, R,R, = 0 if 
t # U. Thus if ,y is a statistical mechanical transfer matrix then these scalars will be 
associated with analytically disjoint parts of the transfer matrix spectrum (Martin 
1986b). 

We may obtain general expressions for the dimensions of our representations as 
follows. The dimension of a representation is given by the number, C, of sequences 
in the corresponding set. For a given n, r partition the set of CL sequences into the 
j = 1, .  . . , r -2 subsets of CL,j sequences which start 

1 2  l . . .  ( j =  1) 
1 2 3 2 . . .  ( j  = 2) 
1 2  3 4 3 . . .  ( j  = 3) 

etc, i.e. subsets of sequences whose kth entry is k (k  < j + 2) and ( j  + 2)th entry is j 
(note that for a given r only the first r-2 such subsets are allowed). The number of 
sequences in each subset, C:,,j,  is CL-,-ZJl; C:,-l,j since C:,-l counts all possible 
endings fromj at the ( j  + 2)th position once, but overcounts by the number of sequences 
which do not get to j at the ( j  + 2)th position starting from 1 at the third position (or 
equivalently those which do not get t o j  at the j th  position in 2n - 1 element sequences, 
which is ZJi: CL-l,j). In this way we obtain all the dimensions recursively from a 
knowledge of the first one: 

r - 2  c:, = c c;,j, 
j = 1  
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Notice that this applies for all m, but that the first non-zero CL is different in each case: 
m = l  c;= 1 ( r 3 3 )  

m = 2  c;=1 ( r 2 4 )  

m = 3  c;= 1 ( r z 5 )  
etc. 

The recursion may be written CL = CL-' if n + m < r -2 ,  and 

where [ p ]  is the integer part of p ,  otherwise, whereupon the generating function for 
C ;  with m = 0 is as given in Martin (1987). That is, with 

[ ( r - 1 ) / 2 1  
b , ( x ) =  I =  n 1 [ l - l cos ' ( f )x ]  

the generating function is 
00 

B ; ( x ) =  1 +  CLx" 
n = l  

Now with m = 1, for instance, the generating function is 

and so on. Notice that each representation has, up to overall factors, the same 
asymptotic dimensions for large n. 

Now consider the trace, tr(q-'I2Ui) (Martin 1987). Note that in any of our 
representations U,  is diagonal with non-zero elements equal to ql" in each of the 
CL-l cases when the third entry in the corresponding basis sequence is 1. We can 
thus see that, at the Beraha q values, the large n limit representations all realise Jones' 
(1983) normalised trace condition. 

Finally note that, if we remove the upper bound on integers in a sequence, then 
the m = 0 representation becomes equivalent to the, in general reducible, Whitney 
polynomial representation described in Martin (1986a). Reducibility is manifested in 
the vanishing of certain elements given by equation (2). It is a trivial extension of the 
Whitney representation to include periodic boundary conditions. In general this 
extension is not so straightforward. 
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